

Goedhart systematic customized products

Cu/Al

Freons - CO₂ - Coolants

Basic information

Capacity

The listed nominal cooling capacities are are based on R4o4A, DT1 condition -8/o (SC2), RH of 85% and 4 pole 3 phase fans connected in Δ for the air cooler ranges VCI, VCe, VNS and DVS. For the BC50 range the listed nominal cooling capacities are are based on R4o4A, DT1 condition -25/-18 (SC3), RH of 85% and 4 pole 3 phase fans connected in Δ . Other cooling conditions (refrigerant, coolant, another DT1, DTM, etc.) can be selected with the GEA Goedhart GPC program.

Influence of Coating on Capacity

The use of coated fins, or of a fully coated coil will result in a capacity decrease of approximately 3%

Capacity optimisation

Since Goedhart tries to limit stock products, we are capable of optimising the circuitry of our evaporators. In order to do this, the following information is needed:

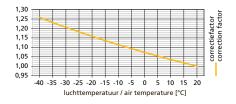
- · Design capacity
- Air volume
- Refrigerant
- Air on temperature
- · Evaporating temperature
- · Liquid temperature before expansion valve.

Capacity on DT1

The capacities are based on R-4o4A direct expansion, DT1 and a RH of 85 %. DT1 is the difference between air-on temperature and the evaporation temperature of the cooler. The evaporation temperature is the saturate temperature corresponding to the pressure at the suction outlet of the cooler. The nominal capacities are based on refrigeration temperature of -8°C and DT1 = 8K for the air cooler ranges VCI, VCe, VNS and DVS, for BC50 the nominal capacities in this brochure are based on refrigeration temperature of -25°C and DT1 = 7K.

Correction factors for various evaporation temperatures and temperature differences (DT1) are as indicated in the tables beside. The requested capacity must be multiplied by a correction factor from the table. so that a cooler with the resulting nominal capacity can be chosen from the selection tables.

Q nominal = faktor x Q requested


Capacities for other refrigerants, coolants and conditions can be calculated with the Goedhart GPC selection program.

			SC2	<u>-DT1 :</u>	<u>=8K-A</u>	<u>ir-on=</u>	<u>0°C (-8</u>	3/0)		
DT1			Eva	aporat	ion te	mpera	ature ((°C)		
K	-3	-4	-5	-6	-7	-8	-9	-10	-11	-12
6	1,32	1,34	1,39	1,43	1,46	1,46	1,47	1,47	1,48	1,49
7	1,05	1,08	1,12	1,15	1,18	1,19	1,19	1,20	1,20	1,21
8	0,86	0,88	0,91	0,94	0,97	1,00	1,00	1,01	1,01	1,02
9	0,76	0,76	0,78	0,80	0,82	0,86	0,86	0,87	0,87	0,88
10	0,66	0,67	0,69	0,71	0,73	0,74	0,74	0,75	0,75	0,76
11	0,58	0,59	0,59	0,60	0,62	0,64	0,64	0,65	0,66	0,67
12	0,55	0,54	0,54	0,54	0,55	0,55	0,56	0,57	0,58	0,59

ı			SC3-DT1 =7K-Air-on=-18°C (-25/-18)														
ı	DT1			Ev:	anorat	ion te	mnor	ature (°C)								
ı				LV	арога	lon te	ilipera	ature (
	K	-21	-22	-23	-24	-25	-26	-27	-28	-29	-30						
İ	6	1,20	1,20	1,21	1,21	1,22	1,22	1,23	1,23	1,24	1,24						
	7	0,99	0,99	0,99	1,00	1,00	1,00	1,01	1,01	1,02	1,02						
	8	0,83	0,84	0,84	0,84	0,85	0,85	0,85	0,85	0,86	0,86						
	9	0,72	0,72	0,72	0,73	0,73	0,73	0,73	0,74	0,74	0,74						
	10	0,63	0,63	0,63	0,64	0,64	0,64	0,64	0,65	0,65	0,65						
	11	0,56	0,56	0,56	0,57	0,57	0,57	0,50	0,58	0,58	0,58						
	12	0,50	0,51	0,51	0,51	0,51	0,51	0,52	0,52	0,52	0,52						

Basic information

Fans

Because of the flexible construction of the Goedhart air cooler, in principle it is possible to deliver with different fans. GEA Goedhart selected a standard fan range of Ziehl Abegg (we reserve the right to alter the manufacturer) which fit perfectly on the Goedhart SCP air coolers. The fans can be supplied in both blow-through and draw-through executions. Against an extra price and with extra delivery times stainless steel guards and EC-fans are available.

Execution

The fans meet the ErP2015 directive. The fans have very good aerodynamic features because of the special impeller geometry. This special impeller geometry gives the fan a low noise level and an high efficiency.

1x23oV fans are suitable for a room temperature till -25°C. 3x40oV fans are suitable for a room temperature till -40°C. When lower room temperatures are desired, special fans are required.

Tension : 3x40oV-50Hz-3 phase

: 1x23oV-5oHz-1 phase

On request 60Hz is possible in 400V - 460V

Protection class : IP44 / IP54

Color : RAL9005 (zwart)
Speed controlling: : - 3 phase AC-me

:- 3 phase AC-motors are suitable for 2-speed regulation by D-Y reconnection at 3x400/690V-50Hz

 3 phase AC-motors are suitable for frequency controller with all-pole sinus filter

- 3 phase EC-motors are available with 0-10V or Modbus

- $\,$ 1 phase AC-motors are suitable for phase control and

transformator.

The motors are standard executed with a thermo contact (TB) and must be connected to prevent motor damages. The maximum allowable working data in the table and on the name plate of the fans are to operate in an air temperature of +20 °C (air density of ρ = 1,2 kg/m³). For air temperatures lower then +20 °C, the current amperage can be calculated by using the diagram multiplication factor, suitable thermal overloads can then be selected. In our Goedhart GPC selection program also the values in the working point are indicated.

Sound data

The mean sound pressure (LpA @ $3m \pm 2$ dB (A)) each air cooler is a calculated indication value according to the EN13487 standard parallel pipe. Goedhart uses the fan manufacturer's sound power level (LwA) at the inlet side of the fan. Changes to or by the fan or the product, affect the sound, in these cases, consult the manufacturer for the new indication value. In critical sound requirements, we advise you to consult an expert.

ZAPLus fans

The Goedhart VCE 800 mm fans are fitted as ZAplus fans. The ZAplus is a bionic axial fan in a compact housing made of strong composite material, which integrates the motor and control, and on which a protection guard can be mounted. The special design of the fan wing ensures high efficiency and low noise. If desired, also other Cu / Al Systematic customized air coolers can be delivered with this special fan. Ask your Goedhart contact for the possibilities and applicability.

ZAplus fan optional

The most efficient solution for your project In good hands at Goedhart

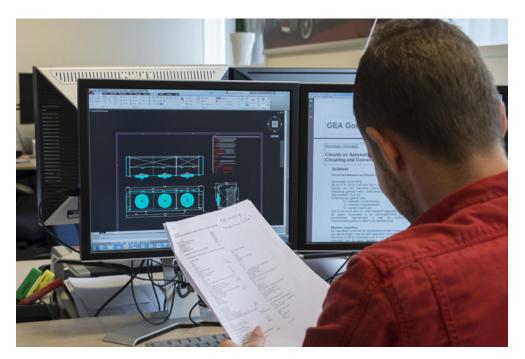
Even before you place an order at Goedhart, a complete and professional team is at your disposal, providing you with thorough advice. We use the latest CAD / CAM developments in the field of parametric engineering. For less complex projects, please consult the electronic selection program GPC. Our goal is to achieve an optimal and cost efficient cooling system for your business. Flexible, easy to use, quality and safety, which are the key targets of our approach.

Flexible

Every industry and therefore every customer has different requirements and has different needs. That is why we do not believe in mass production of fully standardized products. Depending on your program requirements, you can choose from standardized cooling systems available in different sizes (level 1 series), customized cooling systems consisting of standard product modules (level 2) to fully customized solutions produced (level 3). In order to achieve the objectives of our clients, we use the so-called "customized production philosophy. For that Goedhart has a wide range of materials and a highly efficient and flexible production.

The size of your cooling system and your requirements regarding investment costs and efficiency levels, lifespan and environment are leading to the choice of the type of refrigerant. Goedhart supplies air coolers and air cooled condensers suitable for natural (NH3 and Co2) and synthetic refrigerants. Based on your program requirements our sales engineers will provide a customized advice.

User friendly


Not only the fact that Goedhart delivers high-tech products, makes our customers satisfied. Besides quality, service and ease of use is our top priority. Because each heat exchanger is made on behalf of the customer, additional specifications related to wiring and connections can be achieved during the production process.

Subsequently we deliver the air cooler packed or crated on request, taking into account the mode of installation. Your air cooler or condenser is delivered directly ready for installation, which is the service you can expect from Goedhart.

Quality and safety

Both production sites (Sintmaartensdijk and Nymburk) are certified to ISO 9001, ERP2015 and European PED pressure systems. This means that the products of Goedhart meet the strictest safety standards. Intervention of an external inspector by the PED certification no longer needed. This increases the efficiency of the design and manufacturing process and saves the initial cost.

Additionally Goedhart embraces the Japanese Kaizen philosophy that stands for "do it better, make it better, improve even if it goes well. All employees, from management to the cleaning crew are involved and motivated to suggest improvements. Not once a month or a year, but every day. The quality of this awareness increases work morale and has a positive effect on the efficiency It has to do GEA Goedhart evolve from a traditional metal company into a modern and sustainable industry.

Cooling and freezing

The extensive range Goedhart VCI single discharge ceiling mounted industrial air coolers are suitable industrial cooling and freezing applications. The possible air direction is blow-through or draw-through (please specify when ordering).

Tube distance : 50x50 mm straight Fin spacing : 4, 6, 7, 8, 10 and 12mm

Material : 15mm o.d internaly plain (p) or enhanced (i) copper tubes

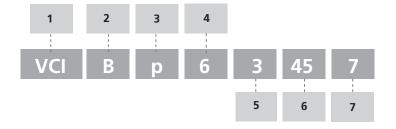
: aluminium HT-fins

Goedhart VCI coil blocks have copper tubes mechanically expanded into fully collared aluminium fins. A good thermal contact is achieved by expansion of the tubes into the fin collars, that are also utilised as spacers to provide a constant distance between the fins. All coolers are pressure tested to 30 bar (lower by cooling mediums) and are supplied with a light over pressure charge of dried air. Suitable for all known refrigerants and coolants, with the exception of NH3.

- · Construction for ceiling mounting
- · Casing material of galvanized sheet steel
- · Standard white epoxy spray finishing (RAL 9003)
- Bend/header projection by end covers, easy removed for maintenance
- Standard refrigerant connections are positioned on the left hand side of the unit when looking with the direction of the airflow.
- Cleanable execution optional
- Possible defrost by hot gas spiral or electric defrost elements will be fixed to the bottom side of the coil.
- · Stainless steel fasteners

Goedhart VCI features

- For cooling and freezing applications
- · Blow-through or draw-through execution possible
- · Available with internally plain or enhanced copper tubes
- Consisting of 1500 models
- Capacity range from 2,5 to 265,0kW.
- EC fan technology possible
- · Fans not standard wired to a junction box (optional
- Suitable for most refrigerants / coolants with exception of NH₃
- · Goedhart VCI is delivered on a wooden frame for easy mounting
- Many options and accessories available (see p. 48)



Goedhart VCI -p en VCI-i

Goedhart VCI - Air coolers

1. Range : VCI

2.Air direction : B=blow Z=draw
3.Tube execution : p = internally plain

i = internally enhanced

4. Number of rows deep: 3, 4, 6, 8, 10

5. Number of fans : 1 - 8

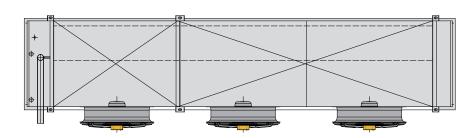
6. Fan diameter : 400, 450, 560, 630 7. Fin spacing : 4, 6, 7, 8, 10, 12

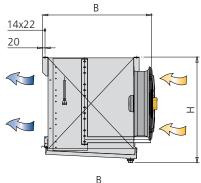
Goedhart VCI - Fan information

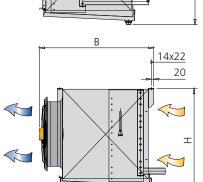
			Δ			Υ		Δ	Y	Δ					
Fan diameter	Tension	Speed	Nominal power	FLC	Speed	Nominal power	FLC	Sound power indication each	LwA (+/-2dB(A))	Speed	Nominal power	FLC	Sound power indication each fan LwA (+/-2dB(A))		
mm	V	min ⁻¹	Watt	А	min ⁻¹	Watt	Α	dB(A)	dB(A)	min ⁻¹	Watt	Α	dB(A)		
Three phase	e - 50Hz	ı	1			ı		ı		Three p	hase - 6	0Hz	1		
400	3x400/690	1370	230	0,44	1110	170	0,27	76	70,5	1580	370	0,56	**		
450	3x400/690	1350	540	1,10	1020	360	0,66	78	70	1560	880	1,40	**		
450 560	3x400/690 3x400/690	1350 1280	540 1050	1,10 2,20	1020 920	360 580	0,66 1,10	78 85	70 76	1560 1430	880 1550	1,40 2,70	**		
													**		
560	3x400/690	1280	1050	2,20	920	580	1,10	85	76	1430	1550	2,70	** ** **		
560 630	3x400/690 3x400/690	1280 1360	1050 (1500)	2,20 2,70	920 1100	580 (1100)	1,10 (1,80)	85 88	76 83 61 65	1430 1640	1550 2900	2,70 4,60	**		
560 630 450	3x400/690 3x400/690 3x400/690	1280 (1360) 900	1050 (1500) 180	2,20 2,70 0.50	920 (1100) 630	580 1100 100	1,10 (1,80) 0.24	85 88 67	76 83 61	1430 1640 1020	1550 2900 280	2,70 4,60 0,60	** ** **		
560 630 450 560	3x400/690 3x400/690 3x400/690 3x400/690 3x400/690	1280 1360 900 870	1050 1500 180 340	2,20 2,70 0.50 0.70	920 1100 630 630	580 (1100) 100 210	1,10 1,80 0.24 0.38	85 88 67 73	76 83 61 65	1430 (1640) 1020 980 1040	1550 2900 280 540	2,70 4,60 0,60 0,88 1,55	** ** **		
560 630 450 560 630	3x400/690 3x400/690 3x400/690 3x400/690 3x400/690	1280 1360 900 870	1050 1500 180 340	2,20 2,70 0.50 0.70	920 1100 630 630	580 (1100) 100 210	1,10 1,80 0.24 0.38	85 88 67 73	76 83 61 65	1430 (1640) 1020 980 1040	1550 2900 280 540 1000	2,70 4,60 0,60 0,88 1,55	** ** **		

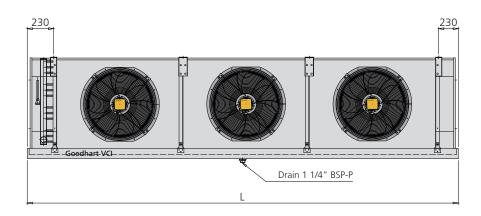
** Ask your Goedhart contact for the sound power indication

Goedhart VCI -i

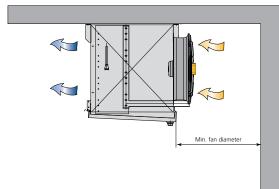

Capacities

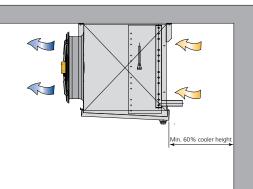

	######	‡ 4	mm	#####	# 6	mm	####		mm										
Type VCI-i	(2			5)			[2			[2			(2			[2			
	DT1 = 8K <mark>(SC</mark> air on= 0°C (-8/0)	Air volume	Surface	DT1 = 8K <mark>(SC</mark> air on= 0°C (-8/0)	Air volume	Surface	DT1 = 8K <mark>(SC</mark> air on= 0°C (-8/0)	Air volume	Surface	DT1 = 8K <mark>(SC</mark> air on= 0°C (-8/0)	Air volume	Surface	DT1 = 8K <mark>(SC</mark> air on= 0°C (-8/0)	Air volume	Surface	DT1 = 8K <mark>(SC</mark> air on= 0°C (-8/0)	Air volume	Surface	LpA @ 3 m (+/- 2 dB(A))
	kW	m³/h	m²	kW	m³/h	m²	kW	m³/h	m²	kW	m³/h	m²	kW	m³/h	m²	kW	m³/h	m²	dB(A)
3.1.40.	6,1	3166	29	4,6	3438	19	4,1	3505	17										53,3
4.1.40.	7	2985	38	5,6	3323	26	5,1	3415	22	4,7	3479	20	F 4	2455	2.4	F 4	2527	20	53,3
6.1.40. 8.1.40.	8	2687	57	7,1	3105	39	6,6 7,6	3234 3065	34 45	6,2 7,2	3330 3183	30 39	5,4 6,5	3455 3346	24 32	5,1 6,2	3527 3448	20 27	53,3 53,3
3.1.45.	9,6	5623	39	7,3	6199	27	6,4	6360	23	7,2	3103	33	0,5	3340	52	0,2	3440	21	53,2
4.1.45.	11,2	5272	52	8,9	5945	35	8,2	6148	31	7,5	6297	27							53,2
6.1.45.	13,1	4723	78	11,4	5503	53	10,6	5758	46	10	5957	41	8,9	6238	33	8,3	6418	28	53,2
8.1.45. 3.1.56.	16,9	9596	71	12,6	10251	49	12,4 11,3	5425 10419	61 42	11,7	5656	54	10,6	5993	44	10,1	6221	37	53,2 59,8
4.1.56.	19,8	9151	95	15,3	9974	65	13,7	101197	56	12,5	10354	49							59,8
6.1.56.	23,3	8392	143	20,2	9447	97	18,6	9760	84	17,3	9988	74	15,1	10293	60	14,2	10477	51	59,8
8.1.56.							21,4	9350	112	20,3	9637	99	18,4	10029	81	17,5	10274	68	59,8
3.1.63.	23,2	13553	97	17,5	14219	66	15,6	14399	57	17.7	1.4220	67							63,6
4.1.63. 6.1.63.	28 33.7	13104 12318	130 195	21,7 28,2	13934 13403	88 132	19,5 25,8	14163 13717	76 115	17,7 23,9	14329 13949	67 101	21	14263	82	19,6	14462	70	63,6 63,6
8.1.63.	33,1	12310	155	20,2	15405	132	30,4	13305	153	28,3	13593	135	25,2	13989	110	24	14244	93	63,6
3.2.40.	12	6323	57	9,2	6869	39	8,2	7005	33										56,1
4.2.40.	14,1	5958	76	11,3	6638	51	10,2	6824	45	9,4	6952	39							56,1
6.2.40. 8.2.40.	16	5362	114	14,3	6200	77	13,3 15.2	6459 6119	67 89	12,3	6651 6355	59 79	10,9	6903 6684	48 64	10,3	7051 6888	41 54	56,1
3.2.45.	19,1	11230	78	14,5	12385	53	12,9	12712	46	14,4	0333	79	12,9	0084	04	12,4	0000	54	56,1 55,9
4.2.45.	22,4	10525	104	17,9	11875	71	16,3	12282	61	15	12583	54							55,9
6.2.45.	26	9426	156	22,9	10987	106	21,3	11503	91	19,9	11902	81	17,7	12464	66	16,6	12827	56	55,9
8.2.45.							24,7	10833	122	23,4	11294	108	21,2	11973	88	20,1	12429	74	55,9
3.2.56. 4.2.56.	33,7 39,5	19178 18284	143 190	25,2 30,5	20493 19936	97 129	22,6 27,4	20831 20384	84 112	25	20701	99							62,4 62,4
6.2.56.	46.5	16761	285	40,3	18878	194	37,2	19505	168	34,5	19966	148	30,2	20577	121	28,4	20949	102	62,4
8.2.56.	-,-			.,_			42,8	18683	223	40,6	19258	197	36,8	20046	161	35	20541	136	62,4
3.2.63.	46,9	27093	194	34,9	28430	132	31,1	28790	114										66,2
4.2.63.	55,9	26192	259	43,4	27856	176	38,9	28315	152	35,4	28649	134	11.0	20510	161	20.1	20010	120	66,2
6.2.63. 8.2.63.	67,2	24615	389	56,3	26792	264	51,5 60,6	27421 26595	228 305	47,8 56,5	27886 27172	202	41,9 50,4	28518 27968	164 219	39,1 47,9	28918 28480	139 186	66,2 66,2
3.3.45.	28,7	16837	117	21,7	18571	79	19,3	19062	69	30,3	27172	203	30, 1	2,300	213	1,,5	20 100	100	57,4
4.3.45.	33,6	15778	155	26,5	17806	106	24,1	18416	91	22,3	18869	81							57,4
6.3.45.	39	14129	233	34	16472	158	31,8	17245	137	29,8	17846	121	26,5	18691	99	25	19237	84	57,4
8.3.45. 3.3.56.	50,8	28760	214	37,9	30735	145	37,1 33,9	16240 31244	183 126	35,2	16935	161	32	17952	131	30,5	18639	112	57,4 63,8
4.3.56.	58,8	27417	285	46,9	29899	194	42,4	30571	167	38,7	31046	148							63,8
6.3.56.	70,3	25132	427	60,4	28309	290	55,8	29252	251	51,8	29943	222	45,3	30860	181	42,3	31418	153	63,8
8.3.56.							65,3	28015	335	61,4	28879	296	54,8	30063	241	51,8	30807	204	63,8
3.3.63.	70,4	40632	291	52,4	42640	198	46,3	43182	171	F2 1	42070	202							67,6
4.3.63. 6.3.63.	82,5 101,3	39279 36910	388 583	64,1 83,7	41780 40179	264 396	58,1 77,3	42469 41125	228 342	53,1 71,7	42970 41824	202 302	62,8	42772	246	58,6	43374	209	67,6 67,6
8.3.63.	101,3	30310	505	03,7	1 0175	330	91,7	39885	457	86	40751	403	76,5	41946	328	72,3	42716	279	67,6
0.51051							21,7	22303	.5,	50	.5751	.05	. 5,5		520	. 2,5	, 13	_,,,	5.,0


 $[\]star$ =Sound pressure indication (LpA) at 3 m distance each air cooler (+/- 2 dB(A)), free field conditions, according EN13487


Goedhart VCI -p en VCI-i

Drawing





Blow-through Goedhart VCI-B

Draw-through Goedhart VCI-Z

The dimensions in the tables are external dimensions of the heat exchanger. Measures such as suspension points, but also internal volum^e [dm₃], other conditions, refrigerants, coolants and materials are available in the Goedhart GPC selection program. Goedhart GPC is free to download from www.goedhart.eu

Goedhart VCI -p en VCI-i

Dimensions

	Dir	mensi	ons			We	ight				Din	nensi	ons			We	ight		
Туре				#	#	#	#	#	#	Туре				#	#	#	#	#	#
VCI	L	В	н	4 mm	9 mm	7 mm	8 mm	10 mm	12 mm	VCI	L	В	н	4 mm	6 mm	7 mm	8 mm	10 mm	12 mm
	mm	mm	mm	kg	kg	kg	kg	kg	kg		mm	mm	mm	kg	kg	kg	kg	kg	kg
3.1.40.	1156	590	620			65				3.4.45.	3656	560	720			220			
4.1.40. 6.1.40.	1156 1156	640 740	620 620	77 95	73 87	72 85	85	82		4.4.45. 6.4.45.	3656 3656	610 710	720 720	280 355	255 315	247 303	295	283	
8.1.40.	1156	840	620	55	103	100	98	95	95	8.4.45.	3656	810	720	333	376	360	349	332	332
1.1.40. 3.1.45.	1156 1256	940 560	620 720			76	112	108	108	1.4.45. 3.4.56.	3656 4856	910 780	720 920			408	400	380	379
4.1.45.	1256	610	720	93	87	85				4.4.56.	4856	830	920	517	469	455			
6.1.45. 8.1.45.	1256 1256	710 810	720 720	115	105 125	103 121	101 117	98 114	111	6.4.56. 8.4.56.	4856 4856	930 1030	920 920	645	571 674	550 646	534 625	511 595	594
1.1.45.	1256	910	720		125	121	135	129	114 129	1.4.56.	4856	1130	920		0/4	040	713	676	675
3.1.56.	1556	780	920	161	452	135				3.4.63.	5256	795	1120	500	622	553			
4.1.56. 6.1.56.	1556 1556	830 930	920 920	164 200	152 182	148 177	173	167		4.4.63. 6.4.63.	5256 5256	845 945	1120 1120	699 868	632 767	614 738	717	686	
8.1.56.	1556	1030	920		212	204	200	192	192	8.4.63.	5256	1045	1120		901	863	834	794	792
1.1.56. 3.1.63.	1556 1656	1130 795	920 1120			176	226	217	216	1.4.63. 3.5.45.	5256 4456	1145 560	1120 720			267	950	899	898
4.1.63.	1656	845	1120	215	198	194				4.5.45.	4456	610	720	343	311	302			
6.1.63. 8.1.63.	1656	945 1045	1120	260	235 274	228 265	222 257	215 247	247	6.5.45. 8.5.45.	4456 4456	710 810	720 720	437	386 460	372 441	360 426	346 406	405
1.1.63.	1656 1656	1145	1120 1120		2/4	200	291	277	247 277	1.5.45.	4456	910	720		460	441	426	466	465
3.2.40.	1856	590	620	407	110	103				3.5.63.	6456	795	1120	0.50	770	677			
4.2.40. 6.2.40.	1856 1856	640 740	620 620	127 157	118 142	115 138	135	131		4.5.63. 6.5.63.	6456 6456	845 945	1120 1120	860 1069	778 943	754 907	880	843	
8.2.40.	1856	840	620		168	163	158	152	153	8.5.63.	6456	1045	1120	.005	1112	1063	1027	976	975
1.2.40. 3.2.45.	1856 2056	940 560	620 720			124	180	172	173	1.5.63. 3.6.45.	6456 5256	1145 560	1120 720			315	1170	1106	1104
4.2.45.	2056	610	720	156	143	139				4.6.45.	5256	610	720	408	367	357			
6.2.45.	2056	710	720	195	175	169	164 194	159	100	6.6.45.	5256	710	720	517	457	439	426	408	400
8.2.45. 1.2.45.	2056 2056	810 910	720 720		208	200	222	185 212	186 211	8.6.45. 1.6.45.	5256 5256	810 910	720 720		545	523	505 582	480 551	480 550
3.2.56.	2656	780	920			226				3.6.63.	7656	795	1120			803			
4.2.56. 6.2.56.	2656 2656	830 930	920 920	282 349	258 312	251 302	293	282		4.6.63. 6.6.63.	7656 7656	845 945	1120 1120	1021 1271	923 1120	894 1077	1044	999	
8.2.56.	2656	1030	920	3 13	366	352	341	326	326	8.6.63.	7656	1045	1120	1271	1320	1262	1219	1158	1156
1.2.56. 3.2.63.	2656 2856	1130 795	920 1120			300	389	370	370	1.6.63. 3.7.45.	7656 6056	1145 560	1120 720			363	1390	1314	1311
4.2.63.	2856	845	1120	376	343	334				4.7.45.	6056	610	720	470	423	409			
6.2.63. 8.2.63.	2856 2856	945 1045	1120 1120	463	412 484	398 464	387 449	372 429	429	6.7.45. 8.7.45.	6056	710 810	720 720	596	525 627	505 600	490 580	468	
1.2.63.	2856	1145	1120		404	404	511	486	484	8.7.45. 1.7.45.	6056 6056	910	720		027	600	670		
3.3.45.	2856	560	720	210	100	172				3.7.63.	7456	795	1320	1150	1024	899			
4.3.45. 6.3.45.	2856 2856	610 710	720 720	219 276	199 246	194 238	231	222		4.7.63. 6.7.63.	7456 7456	845 945	1320 1320		1034 1259	1002 1209	1171	1118	
8.3.45.	2856	810	720		293	280	272	260	260	8.7.63.	7456	1045	1320		1486	1418	1367	1296	
1.3.45. 3.3.56.	2856 3756	910 780	720 920			317	312	297	297	1.7.63. 3.8.45.	7456 6856	1145 560	1320 720			410	1561	1472	1469
4.3.56.	3756	830	920	400	363	353				4.8.45.	6856	610	720	532	479	464			
6.3.56.	3756	930	920	497	441	426	414	397	161	6.8.45.	6856	710	720	676	595	573	555	531	
8.3.56. 1.3.56.	3756 3756	1030 1130	920 920		522	500	484 552	462 524	461 524	8.8.45. 1.8.45.	6856 6856	810 910	720 720		713	682	658 760		
3.3.63.	4056	795	1120	F20	400	426													
4.3.63. 6.3.63.	4056 4056	845 945	1120 1120	538 664	488 589	474 567	551	529											
8.3.63.	4056	1045	1120		692	663	642	611	611										
1.3.63.	4056	1145	1120				731	693	692										

logistics centers

food & beverage

production shop floors

Stepped fin spacings

Goedhart VCe air coolers

Powerful quiet

The Goedhart VCe models are highly effective, for example, for application in food and beverage distribution centers, logistics centers and production shop floors. As required by market demand, models in the Goedhart VCe/VRe series feature few but large fans. With the newly designed modules the speed of the fans and the air velocity through the coil are reduced!

Coil block

Tube distance : 50x50 mm straight
Fin spacing : 4, 6, 7, 8, 10 and 12mm

Material : 15mm o.d internaly plain (p) or enhanced (i) copper tubes

: aluminium HT-fins

Goedhart VCe coil blocks have copper tubes mechanically expanded into fully collared aluminium fins. A good thermal contact is achieved by expansion of the tubes into the fin collars, that are also utilised as spacers to provide a constant distance between the fins. All coolers are pressure tested to 30 bar (lower by cooling mediums) and are supplied with a light over pressure charge of dried air. Suitable for all known refrigerants and coolants, with the exception of NH3.

Casing

- · Construction for ceiling mounting
- · Casing material of galvanized sheet steel
- Standard white epoxy spray finishing (RAL 9003)
- Bend/header projection by end covers, easy removed for maintenance
- Standard refrigerant connections are positioned on the left hand side of the unit when looking with the direction of the airflow.
- Cleanable execution optional
- Possible defrost by hot gas spiral or electric defrost elements will be fixed to the bottom side of the coil.
- Stainless steel fasteners

Goedhart VCe features

- · For cooling and freezing applications
- Blow-through or draw-through execution possible
- Available with internally plain or enhanced copper tubes
- Consisting of 132 models
- Capacity range from 14,5 to 188,0kW at SC2.
- EC fan technology possible
- $\bullet \qquad \hbox{Highly effective air cooler due to new designed modules and fans}$
- Up to 6 fans, fan diameter 500, 630, 710 and 800 mm
- Suitable for most refrigerants / coolants with exception of NH₂
- · Met inwendig gladde of inwendig vergrootte buis beschikbaar
- ZAplus fan optional (most energy efficient fan on the market today)
- Goedhart VCe is delivered on a wooden frame for easy mounting

GEA Heat Exchangers

GEA Goedhart B.V.

Nijverheidsweg 6, 4695 RC Sint Maartensdijk The Netherlands Phone +31 (0)166 665 665, Fax+31 (0)166 663 698 www.goedhart.eu / www.goedhart.nl, info.goedhart.nl@gea.com

GEA Heat Exchangers

GEA Heat Exchangers s.a. / GEA Goedhart systems

Kostomlátecká 180, 288 26 Nymburk Czech Republic Phone +420 325 519 951, Fax+420 325 519 952 www.gea.com / www.goedhart.cz, goedhart.cz@gea.com